姓名:胡倩倩 性别:女 出生日期:1980年11月
学历学位:博士 职称:教授
电子邮箱:qianqian_hu@163.com
一、主要学习与工作经历:
2017.12至今 浙江工商大学太阳成集团tyc7111cc 教授
2015.8-2016.2 加州大学洛杉矶分校, Radiation Oncology Department, 访问学者, 导师: Dr. Dan Ruan
2009.7-2017.12 浙江工商大学太阳成集团tyc7111cc 副教授
2008.3-2009.7 浙江工商大学太阳成集团tyc7111cc 讲师
2005.3-2008.3 浙江大学数学系, 计算机辅助几何设计与图形学, 博士, 导师: 王国瑾教授
2004.8-2005.2 香港科技大学计算机科学系Vision & Graphics lab, 研究助理, 导师:Prof. Chiew-Lan Tai
2001.9-2004.7 浙江大学数学系, 计算机辅助几何设计与图形学, 硕士, 导师: 王国瑾教授
1997.9-2001.7 浙江大学应用数学系, 本科
二、研究方向:
数字几何处理、计算机辅助几何设计、等几何分析等.
三、主讲课程:
高等数学、线性代数、计算方法、计算机图形学、数字信号处理、概率论与数理统计等.
四、主要获奖情况:
1. 2007年获欧拉应用数学奖(个人)
2. 2008年获陆增镛CAD&CG(计算机辅助设计与图形学)高科技奖三等奖(个人)
3. 2008年获浙江省优秀毕业研究生称号(个人)
4. 2010年获浙江省高校科研成果奖二等奖(排名3/3)
5. 2014年获校青年优秀科研成果二等奖(个人)
五、主要项目:
1、2019.1-2021.12 基于重新参数化的几何近似造型技术及其应用 浙江省自然科学基金 主持
2、2015.1-2017.12 面向NURBS的逼近技术及其在等几何分析中的应用研究 浙江省自然科学基金 主持
3、2013.1-2014.12 高精度几何逼近造型方法及其应用研究 浙江大学CAD国家重点实验室开放式课题 主持
4、2013.1-2015.12 CAD中高精度几何近似造型技术及应用研究 国家自然科学基金 主持
5、2010.1-2011.12 计算几何中几何逼近造型的若干关键技术研究 浙江省自然科学基金 主持
六、主要论著:
[1]Lin Hongwei, Xiong Yunyang, Wang Xiao, Hu Qianqian, Ren Jingwen. Isogeometric Least-Squares Collocation Method with Consistency and Convergence Analysis. Journal of Systems Science & Complexity, 2020, 33: 1656-1693.(SCI)
[2]Hu Qianqian, Zhang Yanhui, Wang Guojin. The least square progressive iterative approximation property of low degree non-uniform triangular Bezier surfaces. Journal of Computer-Aided Design & Computer Graphics, 2020,32(3): 360-366.(In Chinese)(EI)
[3]Lizheng Lu, Shiqing Zhao, Qianqian Hu. Improvement on constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials. Computer Aided Geometric Design, 2018, 61: 20-26.(SCI)
[4]Hu Qianqian, Wang Weiwei, Wang Guojin. Piecewise Mӧbius Reparameterization of Rational Bézier Curves. Journal of Computer-Aided Design & Computer Graphics, 2018,30(7): 1230-1235. (In Chinese)(EI)
[5]Wu jinming, Zhang Yu, Zhang Xiaolei, Hu Qianqian. On Integro Quintic Spline Quasi-interpolation. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5): 801-807.(In Chinese)(EI)
[6]Lizheng Lu, Chengkai Jiang, Qianqian Hu. Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization. Computers & Graphics, 2018, 92-98.(SCI)
[7]Guojin Wang, Huixia Xu, Qianqian Hu. Bounds on partial derivatives of NURBS surfaces. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(3): 281-293.(SCI)
[8]Qianqian Hu. Explicit G1 approximation of conic sections using Bézier curves of arbitrary degree. Journal of Computational and Applied Mathematics, 2016, 292, 505-512. (SCI)
[9]Hongwei Lin, Sinan Jin, Qianqian Hu, Zhenbao Liu. Constructing B-spline solids from tetrahedral meshes for isogeometric analysis. Computer Aided Geometric Design, 2015, 35-36, 109-120. (SCI)
[10]Qianqian Hu.G1 approximation of conic sections by quartic Bézier curves. Computers & Mathematics with Applications, 2014, 68(12): 1882-1891. (SCI)
[11]Qianqian Hu.Constrained polynomial approximation of quadric surfaces. Applied Mathematics and Computation, 2014, 248: 354-362. (SCI)
[12]Hongwei Lin, Qianqian Hu, Yunyang Xiong. Consistency and Convergence Properties of the Isogeometric Collocation Method. Computer methods in applied mechanics and engineering, 2013, 267: 471-486. (SCI)
[13]Qianqian Hu. An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces. Applied Mathematics and Computation, 2013, 219: 9308-9316.(SCI)
[14]Qianqian Hu, Huixia Xu. Constrained polynomial approximation of rational Bézier curves using reparameterization. Journal of computational and applied mathematics, 2013, 249: 133-143.(SCI)
[15]Huixia Xu, Qianqian Hu. Approximating uniform rational B-spline curves by polynomial B-spline curves. Journal of computational and applied mathematics, 2013, 244: 10-18. (SCI)
[16]Qian-Qian Hu. Approximating conic sections by constrained Bézier curves of arbitrary degree. Journal of computational and applied mathematics, 2012, 236(11): 2813-2821. (SCI)
[17]HU Qian-qian, WANG Guo-jin. Rational cubic/quartic Said-Ball conics. Applied Mathematics A Journal of Chinese Universities, 2011, 26(2): 198-212.(SCI)
[18]Qian-qian Hu, Guo-jin Wang. Representing conics by low degree rational DP curves. Journal of Zhejiang University-SCIENCE, 2010, 11(4): 278-289.(SCI)
[19]Qianqian Hu, Guojin Wang. Multi-degree reduction of disk Bézier curves in L2 norm. Journal of Information & Computational Science, 2010, 7(5): 1045-1057.(EI)
[20]陆利正, 胡倩倩, 汪国昭. Bézier曲线降阶的迭代算法. 计算机辅助设计与图形学学报, 2009, 21(12): 1689-1693.(EI)
[21]QianQian Hu, GuoJin Wang. Optimal multi-degree reduction of triangular Bézier surfaces with corners continuity in the norm L2 . Journal of Computational and Applied Mathematics, 2008, 215(1): 114-126.(SCI)
[22]Hu Qianqian, Wang Guojin. A novel algorithm for explicit optimal multi-degree reduction of triangular surfaces, SCIENCE IN CHINA, Series F, 2008, 51(1): 13-24. (SCI)
[23]胡倩倩, 王国瑾. 球域Bézier曲面的精确边界及其多项式逼近. 浙江大学学报工学版, 2008, 42(11): 1906-1909.(EI)
[24]QianQian Hu, GuoJin Wang. Improved bounds on partial derivatives of rational triangular Bézier surface. Computer-Aided Design, 2007, 39(12):1113-1119. (SCI)
[25]QianQian Hu, GuoJin Wang. Necessary and sufficient conditions for rational quartic representation of conic sections. Journal of Computational and Applied Mathematics, 2007, 203(1), 190-208. (SCI)
[26]QianQian Hu, GuoJin Wang. Explicit multi-degree reduction of Said-Bézier generalized Ball curves with endpoints constraints, Journal of Information and Computational Science, 2007, 4(2), 533-543.(EI)
[27]QianQian Hu, GuoJin Wang. Rational quartic Said-Ball conics. The 3rd Korea- China Joint Conference on Geometric and Visual Computing, 2007, 94-102.
[28]Hu Qianqian, Wang Guojin. Geometric meanings of the parameters on rational conic segments, SCIENCE IN CHINA, Series A, 2005, 48(9), 1209-1222. (SCI)
[29]王国瑾, 胡倩倩.一类有理Bézier曲线及其求积求导的多项式逼近. 高校应用数学学报A辑, 2004, 19 (1): 89-96.